1,914 research outputs found

    Knowing When to Fold\u27em: A Monte Carlo Exploration of Card Shuffling and How Poker Players Can Gain an Advantage

    Full text link
    This work demonstrates that the card shuffling procedure commonly performed in casino poker rooms is insufficient for randomizing a deck of cards. We explore this in the context of Texas Hold’em, which has established itself as the most popular form of poker worldwide over the past few decades. We show the degree to which the resulting distribution of the orderings of all 52 cards in the deck after shuffling is not uniform. Rather, any given card may be substantially more (or less) likely to show up as an important card in the subsequent hand. Additionally, we find that the shuffling procedure does not sufficiently separate cards from their starting point; that is, cards are more likely to stay close together after shuffling than they should by chance. Thus, in this work, we demonstrate that Texas Hold’em players can gain an advantage over their opponents by recognizing these deficiencies in the shuffling procedure

    First-principles investigation of 180-degree domain walls in BaTiO_3

    Full text link
    We present a first-principles study of 180-degree ferroelectric domain walls in tetragonal barium titanate. The theory is based on an effective Hamiltonian that has previously been determined from first-principles ultrasoft-pseudopotential calculations. Statistical properties are investigated using Monte Carlo simulations. We compute the domain-wall energy, free energy, and thickness, analyze the behavior of the ferroelectric order parameter in the interior of the domain wall, and study its spatial fluctuations. An abrupt reversal of the polarization is found, unlike the gradual rotation typical of the ferromagnetic case.Comment: Revtex (preprint style, 13 pages) + 3 postscript figures. A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#pad_wal

    A randomized, placebo-controlled trial of late Na current inhibition (ranolazine) in coronary microvascular dysfunction (CMD): impact on angina and myocardial perfusion reserve.

    Get PDF
    AimsThe mechanistic basis of the symptoms and signs of myocardial ischaemia in patients without obstructive coronary artery disease (CAD) and evidence of coronary microvascular dysfunction (CMD) is unclear. The aim of this study was to mechanistically test short-term late sodium current inhibition (ranolazine) in such subjects on angina, myocardial perfusion reserve index, and diastolic filling.Materials and resultsRandomized, double-blind, placebo-controlled, crossover, mechanistic trial in subjects with evidence of CMD [invasive coronary reactivity testing or non-invasive cardiac magnetic resonance imaging myocardial perfusion reserve index (MPRI)]. Short-term oral ranolazine 500-1000 mg twice daily for 2 weeks vs. placebo. Angina measured by Seattle Angina Questionnaire (SAQ) and SAQ-7 (co-primaries), diary angina (secondary), stress MPRI, diastolic filling, quality of life (QoL). Of 128 (96% women) subjects, no treatment differences in the outcomes were observed. Peak heart rate was lower during pharmacological stress during ranolazine (-3.55 b.p.m., P < 0.001). The change in SAQ-7 directly correlated with the change in MPRI (correlation 0.25, P = 0.005). The change in MPRI predicted the change in SAQ QoL, adjusted for body mass index (BMI), prior myocardial infarction, and site (P = 0.0032). Low coronary flow reserve (CFR <2.5) subjects improved MPRI (P < 0.0137), SAQ angina frequency (P = 0.027), and SAQ-7 (P = 0.041).ConclusionsIn this mechanistic trial among symptomatic subjects, no obstructive CAD, short-term late sodium current inhibition was not generally effective for SAQ angina. Angina and myocardial perfusion reserve changes were related, supporting the notion that strategies to improve ischaemia should be tested in these subjects.Trial registrationclinicaltrials.gov Identifier: NCT01342029

    Relativistic MHD with Adaptive Mesh Refinement

    Get PDF
    This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the ∇⋅B=0\nabla\cdot {\bf B}=0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table

    Random Geometric Graphs

    Full text link
    We analyse graphs in which each vertex is assigned random coordinates in a geometric space of arbitrary dimensionality and only edges between adjacent points are present. The critical connectivity is found numerically by examining the size of the largest cluster. We derive an analytical expression for the cluster coefficient which shows that the graphs are distinctly different from standard random graphs, even for infinite dimensionality. Insights relevant for graph bi-partitioning are included.Comment: 16 pages, 10 figures. Minor changes. Added reference

    Reduced level of arousal and increased mortality in adult acute medical admissions: a systematic review and meta-analysis

    Get PDF
    Abstract Background Reduced level of arousal is commonly observed in medical admissions and may predict in-hospital mortality. Delirium and reduced level of arousal are closely related. We systematically reviewed and conducted a meta-analysis of studies in adult acute medical patients of the relationship between reduced level of arousal on admission and in-hospital mortality. Methods We conducted a systematic review (PROSPERO: CRD42016022048), searching MEDLINE and EMBASE. We included studies of adult patients admitted with acute medical illness with level of arousal assessed on admission and mortality rates reported. We performed meta-analysis using a random effects model. Results From 23,941 studies we included 21 with 14 included in the meta-analysis. Mean age range was 33.4 - 83.8 years. Studies considered unselected general medical admissions (8 studies, n=13,039) or specific medical conditions (13 studies, n=38,882). Methods of evaluating level of arousal varied. The prevalence of reduced level of arousal was 3.1%-76.9% (median 13.5%). Mortality rates were 1.7%-58% (median 15.9%). Reduced level of arousal was associated with higher in-hospital mortality (pooled OR 5.71; 95% CI 4.21-7.74; low quality evidence: high risk of bias, clinical heterogeneity and possible publication bias). Conclusions Reduced level of arousal on hospital admission may be a strong predictor of in-hospital mortality. Most evidence was of low quality. Reduced level of arousal is highly specific to delirium, better formal detection of hypoactive delirium and implementation of care pathways may improve outcomes. Future studies to assess the impact of interventions on in-hospital mortality should use validated assessments of both level of arousal and delirium

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
    • 

    corecore